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I. INTRODUCTION

IN this project, we propose the novel architecture Sliding
Window Attention-GAN (SWaTGAN), which utilizes the

sliding window attention (SWA), proposed in [2]. Initially
proposed for natural language processing tasks, SWA limits
the receptive field of each token to a pre-determined window
size. In this way, in the early layers of transformer blocks,
the similarity score is calculated between the near-by tokens.
The receptive field of each token increases towards the latter
transformer layers, enabling the model to capture long-range
dependencies despite starting with a narrow receptive field.
Using SWA enables SWaTGAN to achieve a competitive
performance in unconditional image generation tasks in a more
efficient way than vanilla transformer based architectures, e.g.
[4]. We trained SWaTGAN model with CelebA dataset, taken
from Kaggle [7], which contains celebrity face images. We
also trained TransGAN [4], and DCGAN [3] models with the
same dataset in order to compare the results, and the training
times of these models.

In Section 2 Related Works, we briefly explain the previous
work on unconditional image generation, sliding window at-
tention, TransGAN, and DCGAN. In Section 3 Model Details,
we give the architecture details of SWaTGAN, by explaining
the underlying working principles of the model, and progres-
sive growing in the generator. In Section 4 Experiments, we
explain the training details and configurations of the model,
and the details of the dataset we used during training. Lastly,
in Section 5 Results, we state and discuss the qualitative
and quantitative evaluation results, comparing SWaTGAN’s
performance with the performance of TransGAN [4] and
DCGAN [3].

II. RELATED WORKS

A. Unconditional Image Generation

Unconditional image generation is a process where a model
generates images from scratch without any specific input
conditions like labels or descriptions. The model learns the dis-
tribution of the training data and creates new images that look
like the training images. One of the common generative model
architecture is generative adversarial networks(GANs) [1].

The generator network in GANs produces images, while the
discriminator network evaluates them, with both networks
training simultaneously in a competitive manner, which can
be demonstrated as a two player mini-max game. The pri-
mary challenge in unconditional image generation is achieving
high-quality and diverse images, which is addressed through
advanced training techniques and architectural innovations.

B. DCGAN: Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks

DCGAN[3], introduced by Radford, Metz, and Chintala
in 2015, replaced the linear layers in Generative Adversarial
Networks[1] with deep convolutional layers and has become
a foundational model in the field of generative adversarial
networks (GANs). It uses deep convolutional layers in both the
generator and discriminator. The model introduces techniques
to stabilize GAN training, such as avoiding max-pooling
and using batch normalization. However, DCGAN relies on
convolutional layers, which are inherently local in nature.
Hence, they are struggling to capture long-range dependencies.

C. TransGAN: Two Pure Transformers Can Make One Strong
GAN

TransGan [4], introduced by Jiang, Chang, and Wang in
2021, marks a significant difference from traditional GAN
architectures [3] by replacing the convolutional layers with
transformer blocks. This paper is the first paper that en-
tirely replaced convolutional layers with transformer blocks.
Unlike the convolutional layers that are good at handling
local dependencies, the multi head self-attention mechanism
of transformers enables the model to capture long-range de-
pendencies in the image data. This capability is crucial for
generating high-resolution images. In TransGAN, both the
generator and discriminator are composed of multiple layers
of transformer blocks. However, the matrix multiplications
in the self-attention mechanism is computationally expensive
and requires large memory that can limit the scalability of
the model. Furthermore, the transformers are data hungry and
need too much data for training. The paper addresses this issue
with data augmentation, while the problem with computational
inefficiency still persists.



2

D. Longformer: The Long-Document Transformer

The Longformer[2], introduced by Beltagy, Peters, and
Cohan in 2020, addresses the challenge of processing long
documents with transformer models. Traditional transformers
with their quadratic complexity with respect to input length
are inefficient for handling the long sequences. Longformer
paper introduces a novel attention mechanism, namely the
sliding window attention shown in Figure 1.(b), that reduces
this complexity, enabling efficient handling of long documents.
The sliding window attention mechanism limits each token’s
attention to a fixed size window of neighboring tokens. This
reduces the computational complexity from quadratic to linear
with respect to the sequence length.

Fig. 1: A visual comparison of vanilla attention mechanism (a)
and the sliding window attention mechanism (b). The figure
is taken from the Longformer paper [2], which first proposes
the sliding window attention mechanism.

III. MODEL DETAILS

Fig. 2: The generator and discriminator architecture of SWaT-
GAN model

The proposed model SWaTGAN is a transformer-based
GAN model for unconditional image generation tasks. SWaT-
GAN utilizes the efficient sliding window attention layers [2]
in order to achieve good performance in a memory-efficient

way. As explained in Section 2, in sliding window attention
layers, the similarity score of each token is computed only
within a local neighborhood of each token, whose size is
determined by the window size parameter in our model.

As illustrated in Figure 2, the generator of the model
progressively increases the spatial resolution, while decreasing
the channel size in order to ensure a memory-friendly training,
a technique first proposed in [8]. The generator receives
a random noise vector of dimension 1024. Then it passes
the noise through a multi-layer perceptron (MLP) block
which consists of several linear layers, and GELU activation
function. Then we use three consecutive Sliding Window
Transformer Encoder blocks (SWTE). As illustrated in
Figure 3, each SWTE utilizes several encoder blocks, each
of which contains the sliding window attention layer, layer
normalizations, and an MLP block. The number of encoder
blocks in each SWTE is determined by the parameter named
depth. In Section 4 Experiments, we will share the details
of the experiments we conducted with different choices of
depth to see its effect on the performance and training time.
The three consecutive SWTE blocks are trained to generate
the latent vectors required to generate 8x8, 16x16, and 32x32
images respectively, in a progressive manner. To achieve this
progression, we used two upsampling layers with nearest-
neighbor interpolation, one in between each SWTE blocks.
Lastly, we unflatten the latent vector generated by the last
SWTE, using a 2D convolution layer, to obtain the generated
image. In the discriminator, we use a SWTE block with 7
encoder blocks, i.e. depth is 7. The input image is flattened
through a 2D convolution layer and passed through the single
SWTE with 7 encoder blocks. The discriminator, then, outputs
if the input image is real or fake.

Fig. 3: A single Sliding Window Transformer Encoder Block

Traditionally, the generator and discriminator are both
trained via the adversarial mini-max game [1], represented by
the equation
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min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(1)

,where G and D represent the generator and discriminator
functions respectively, pdata represents the distribution of the
training dataset, and pz represents the generated data distri-
bution. Here, G tries to minimize this loss function by trying
to fool D into believing that the generated images are real,
while D tries to maximize this loss function by learning to
tell generated images from real images.

Our model, SWatGaN, offers several advantages over the
traditional GAN architectures by incorporating the SWA
mechanism. By stacking multiple transformer blocks on top
of each other, SWaTGAN effectively captures both local and
long-range dependencies in images, which results in improved
quality in the generated output images. SWA reduces the
computational complexity compared to vanilla self-attention,
quadratic to linear, and make it more efficient, scalable for
high-resolution image generation. Furthermore, it improves
training stability by balancing local and global feature han-
dling that results in better performance compared to conven-
tional convolutional GANs like DCGAN.

IV. EXPERIMENTS

A. Dataset Details

For this project, we used the Large-scale CelebFaces At-
tributes (CelebA) dataset, which is very common dataset
among the state of art architectures. It contains 202,599
celebrity images. The images are originally have a resolution
of 178x218 pixels, but we were resized the images to 32x32
pixels to be able to fit our computational resources. The dataset
features diverse facial expressions, poses, and attributes, mak-
ing it ideal for tasks like facial attribute recognition and image
generation. In Figure 4, we demonstrate a small sample of the
32x32 resized images from our dataset. More details about the
CelebA dataset can be found on its Kaggle page [7].

Fig. 4: A sample of images from CelebA dataset. Resized to
32x32.

B. Training Details

We used a 12GB Nvidia RTX 4080 GPU for model training.
In Table I, we showed the 4 models we trained. In the Depth
column, we showed the number of encoder blocks, 3, per
layers of SWTE blocks in the generator (3 layers in total).

In the second and third columns, we showed the Training
Time and GPU Usage during training, respectively. In the
last column, we show the FID scores of each model.
We trained all 4 models with a batch size of 64, a learning
rate of 1e-4 both for generator and discriminator, and 1e-3
weight decay, for 20 epochs. Since we do not have enough
computational resources to conduct more detailed experiments,
unfortunately we could not optimize the training parameters
for each model.

1) TransGAN: We trained one TransGAN model with
depths 5, 4, and 2 in the generator. In the discriminator,
we used a single SWTE with 7 encoder blocks, the same
as in all of the 4 models. We trained the TransGAN model
for 20 epochs, which took approximately 10 hours, utilizing
approximately 11.6GB of our 12GB GPU. In the end, we got
and FID score of 144.38.

2) SWaTGAN: We trained three SWaTGAN models with
varying depths in the generators. These varying depths are
5-4-2, the same as the TransGAN, 7-7-7, and 15-12-9. In the
discriminators, we used a single SWTE with 7 encoder blocks,
the same as the TransGAN. We trained each SWaTGAN
model for 20 epochs. The training of the 5-4-2 model took
approximately 6 hours, utilizing approximately 5.4GB GPU.
In the end, we got and FID score of 177.89.

The training of the 7-7-7 model took approximately 7
hours, utilizing approximately 8GB GPU. We got an FID
score of 164.05. Lastly, the training of 15-12-9 model took
approximately 9 hours, utilizing approximately 11.2GB GPU,
close to the TransGAN model. In the end, we got and FID
score of 155.32. With the 15-12-9 model, we tried to limit-test
our model by observing how does the depth parameter affects
the training time and GPU usage. We increased the depth
size as far as our GPU allowed, to observe how SWaTGAN
performs compared to TransGAN with limited computational
resources.

V. RESULTS

A. Quantitative Results

TABLE I: Training Time and FID Score Comparison

Model Depth Training Time (h) GPU Usage FID
TransGAN 5-4-2 10 11.6G 144.38
SWaTGAN 5-4-2 6 5.4G 218.5549
SWaTGAN 7-7-7 7 8G 164.05
SWatGAN 15-12-9 9 11.2G 155.32

We compared the TransGAN model and three SWaTGAN
models with varying depths, based on training time and Fr
echet Inception Distance (FID) scores. TransGAN, achieved
the best FID score of 144.38 but required 10 hours of train-
ing. The most minimal SWaTGAN model with 5-4-2 depth
configuration in the generator took almost half the time and
utilized half the GPU as the TransGAN model, but performed
worse than the TransGAN model based on the FID scores
(144.38 in TransGAN vs. 218.5549 in SWaTGAN 5-4-2).
The second SWaTGAN model with 7-7-7 depth configuration
in the generator performed slightly better than the previous
SWaTGAN model by sacrificing a slight training time and gpu
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utilization. This motivated us to limit-test our computational
resources by increasing the depth parameters as far as our GPU
allows. As a result, we trained our largest model SWaTGAN
with 15-12-9 depth configuration, which performed better than
other two SWaTGAN models. The last SWaTGAN model took
almost as much time as the TransGAN model took for training,
and utilized a close GB of GPU. However, based on the
FID scores we conclude that the TransGAN model performed
better than our SWaTGAN model with similar computational
resources. Nonetheless, as we stated earlier, we could not
conduct experiments to optimize the hyperparameters of the
SWaTGAN model due to the lack of enough computational
resources. We believe that if we optimize the hyperparameters
of SWaTGAN and can train the models longer, we can
possibly observe promising results of our SWaTGAN model.

SWaTGAN, utilizing sliding window attention, balanced ef-
ficiency and quality, completing training in 6 hours with a FID
score of 218.5549. While Trans- GAN produced higher-quality
images, SWaTGAN offered a more efficient training process,
making it suitable for scenarios with limited computational
resources.

B. Qualitative Results
In this section, we demonstrate some samples of images

generated by the models we trained.

Fig. 5: A sample of images generated by TransGAN model

Fig. 6: A sample of images generated by the SWaTGAN model
with 5-4-2 configuration

Fig. 7: A sample of images generated by the SWaTGAN model
with 7-7-7 configuration

Fig. 8: A sample of images generated by the SWaTGAN model
with 15-12-9 configuration

VI. CONCLUSION & FUTURE WORK

In this project, we introduced SWaTGAN, a novel GAN
architecture leveraging Sliding Window Attention (SWA) for
efficient image generation. By using SWA, SWaTGAN effec-
tively captures both local and global dependencies in images,
providing a balanced approach to generate high-quality images
while maintaining computational efficiency. We trained and
evaluated SWaTGAN on the CelebA dataset, comparing its
performance against DCGAN and TransGAN. Our results
shows that SWaTGAN offers a trade-off between the training
time and image quality, which makes model a better choice
compared to the TransGAN if there is a limited computa-
tional resource. Although TransGAN achieved the best Fréchet
Inception Distance (FID) score, SWaTGAN’s efficiency and
competitive performance make it a strong candidate for future
research and applications in generative modeling. Future work
could explore further optimizations of hyperparameters and
the model architecture of SWATGAN that results in better
performance compared to TransGAN and other transformer
based generative adversarial networks. Also, future work will
include to extend th SWaTGAN to handle higher resolution
images and more diverse datasets.
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